Q.P. Code: 18CE1006

R18

	Reg. No.	
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTUR	
	(AUTONOMOUS)	
	M.Tech I year II Semester Regular Examinations June 2019	
	STRUCTURAL DYNAMICS	
	(Structural Engineering)	
	Time: 3 hours Max. Marks: 60	
	(Answer all Five Units 5×12=60 Marks)	
	UNIT I	
1	a Explain about lumped mass and Continuous mass system.	6M
	b Derive the Equation of motion for Undamped single degree of freedom system with forced vibration.	6M
	OR	
2	Briefly explain fundamental objectives of dynamic analysis with example	12M
_	UNIT II	12111
3	Determine the response of SDOF system subjected to triangle pulse load.	12M
J	system subjected to triangle pulse load.	1 2111
	F ₀	
	Forced Free vibration	
	vibration	
	T _d	
	OR	
4	Derive the equation for DMF for undamped single degree of freedom system with forced	12M
	vibration.	
_	UNIT III	103.4
5	Derive the equation of motion for two degree of freedom system in matrix form and also	12M
	derive the solution for the equation.	
,	OR	103.4
6	Draw the mode shapes for given problem	12M
	6000 KG	
	40 KN/m 7000 KG	
	50 KN/m	
	nun nun	
	UNIT IV	
7	Derive the equation of motion for beam subjected to uniformly distributed load.	12M
	OR	
8	Derive the natural frequency and mode shapes for uniform beam having one end fixed.	12M
	UNIT V	
9	Explain step by step procedure of Holzer method. Derive fundamental natural frequencies	12M
	and mode shapes.	
	OR	
10	Calculate approximate natural frequency of a system by using Transfer matrix method.	12M
-	Я ^{3К} — ² К □ к □	
	<u> </u>	